

12. Übung zur Theoretischen Informationstechnik II Prof. Dr.-Ing. Anke Schmeink, Martijn Arts, Niklas Koep, Christoph Schmitz 08.07.2015

Aufgabe 1. Lösen Sie das folgende Optimierungsproblem mit Hilfe des Branch-and-Bound-Verfahrens.

$$\begin{aligned} \max & x_1 + 4x_2 + 8x_3 \\ \text{s.d.} & x_1 + 2x_2 + 4x_3 \leq 5 \\ & x_i \in \{0,1\}, \qquad i = 1,2,3. \end{aligned}$$

Aufgabe 2.

- a) Ein Netzwerkbetreiber kann $n \in \mathbb{N}$ verschiedene Dienste mit je einem bestimmten Ertrag $c_1, ..., c_n \in \mathbb{R}$ anbieten. Jeder Dienst benötigt einen bestimmten Anteil $v_1, ..., v_n \in \mathbb{R}$ vom Frequenzband, welches dem Betreiber zur Verfügung steht. Die Gesamtbreite des Frequenzbandes sei $B \in \mathbb{R}$. Wie ist die Bandbreite zu verteilen, damit der Gesamtertrag des Betreibers maximal wird (Formulierung als kombinatorisches Optimierungsproblem)?
- b) Lösen Sie das Knapsackproblem mit Hilfe des Branch-and-Bound-Verfahrens. Es seien dazu n=3 und $c_i=v_i$ für $1 \le i \le 3$. Weiter seien $c_1=c_2=2, c_3=3$ und B=6.